
OPENCV

MANOEL NETO

WHAT IS OPENCV?
•  Is an open source C++ library for image processing and

computer vision

•  Developed by Intel
•  Supported by Willow Garage

•  Free for both commercial and non-commercial use

•  It is a library of many inbuilt functions mainly aimed at real
time image processing

•  it has several hundreds of image processing and
computer vision algorithms which make developing
advanced computer vision applications easy and efficient

KEY FEATURES
•  Optimized for real time image processing & computer

vision applications

•  Primary interface of OpenCV is in C++
•  There are also C, Python and JAVA full interfaces

•  OpenCV applications run on Windows, Android, Linux,
Mac and iOS

•  Optimized for Intel processors

INSTALL
•  Instalar o OpenCV

•  http://opencv.org/downloads.html

•  Instalar o Eclipse / CDT

•  http://www.eclipse.org/cdt/downloads.php

CONFIGURE ECLIPSE
•  http://docs.opencv.org/doc/tutorials/introduction/

linux_eclipse/linux_eclipse.html

BASICS OF OPENCV
API
•  The main modules of OpenCV are listed below

•  Core: basic module of OpenCV. It includes basic data
structures (e.g.- Mat data structure) and basic image
processing functions

•  Highgui: provides simple user interface capabilities,
several image and video codecs, image and video
capturing capabilities, manipulating image windows,
handling track bars and mouse events and etc.

•  Imgproc: includes basic image processing algorithms
including image filtering, image transformations, color
space conversions and etc.

•  Video: This is a video analysis module which includes
object tracking algorithms, background subtraction
algorithms and etc.

•  Objdetect: This includes object detection and recognition
algorithms for standard objects.

BASICS OF OPENCV
API
What is an IMAGE?

•  Any digital image consists of pixels (a matrix of pixels).

•  Any pixel should have some value.

•  The minimum value for a pixel is 0 and it represents black color.

•  When the value of the pixel is increased, the intensity of that pixel
is also increased.

•  what is image-depth? image-depth means the number of bits
allocated for each pixel.

•  If it is 8, each pixel can have a value between 0 and 255.
•  If it is 4, each pixel can have a value between 0 to 15 (1111 in

binary).

PIXELTYPES
PixelTypes shows how the image is represented in data

•  BGR - The default color of imread(). Normal 3 channel color

•  HSV - Hue is color, Saturation is amount, Value is lightness. 3
channels

•  GRAYSCALE - Gray values, Single channel
• OpenCV requires that images be in BGR or Grayscale

in order to be shown or saved. Otherwise, undesirable
effects may appear.

BASICS OF OPENCV
API
Data Types for Arrays
•  Data type of an array defines the number of bits allocated for

each element of array (pixels in an image) and how the value
is represented using those bits. Any array elements should
have one of following data types:

CV_8U (8 bit unsigned integer)
CV_8S (8 bit signed integer)
CV_16U (16 bit unsigned integer)
CV_16S (16 bit signed integer)
CV_32S (32 bit signed integer)
CV_32F (32 bit floating point number)
CV_64F (64 bit float floating point number)

BASICS OF OPENCV
API
Example Single channel array with 8 bit unsigned integers

BASICS OF OPENCV
API
For multi channel arrays :

•  CV_8UC1 (single channel array with 8 bit unsigned

integers)

•  CV_8UC2 (2 channel array with 8 bit unsigned integers)

•  CV_8UC3 (3 channel array with 8 bit unsigned integers)

•  CV_8UC4 (4 channel array with 8 bit unsigned integers)

•  CV_8UC(n) (n channel array with 8 bit unsigned integers (n
can be from 1 to 512))

BASICS OF OPENCV
API
Example 3 channel array with 8 bit unsigned integers:

BASICS OF OPENCV
API
Example 2 channel array with 8 bit signed integers:

EXAMPLE
Here is some properties of the following image:

 Image-depth 8 bit
1 channel (So, this is a grayscale image, no color content)
The height is 4 pixel
The width is 5 pixels
The resolution of this image is 4x5.

EXAMPLE
•  Image-depth 24 bit / 3 channels (this is a color image)

•  The height is 4 pixel and The width is 5 pixels
•  The resolution of this image is 4x5.

•  Color image should consist of at least 3 planes; Red,
Green and Blue. Any pixel is a combination of three 3
values. (255, 0, 0) represent pure red. (0, 255, 0) represent
pure green. (255, 0, 255) represents pure violate.

•  Why 24 bit of image-depth?

HELLO OPENCV
#include "opencv2/highgui/highgui.hpp"

#include <iostream>

using namespace cv;

All OpenCV classes and functions are in cv namespace.

using namespace std;

Mat img = imread("MyPic.JPG",
CV_LOAD_IMAGE_UNCHANGED);

//read the image data in the file "MyPic.JPG" and store it in
'img’ Mat datastructure

HELLO OPENCV
•  Mat img = imread(const string& filename,

int flags=CV_LOAD_IMAGE_COLOR)

•  Mat is a data structure to store images in a matrix.
•  Mat data structure in the above program. It is declared

in "opencv2/core/core.hpp" header file.

•  Then why don't we include this? It's because "opencv2/
highgui/highgui.hpp" header file include that header file
inside it. So, we don't need to include it again in our program.

•  imread() is a function declared in "opencv2/highgui/
highgui.hpp" header file. It loads an image from a file and
stores it in Mat data structure.

HELLO OPENCV
•  Arguments of imread() function

•  filename - location of the file. If you just give the filename
only, that image should be in the same folder as your C++ file.
Otherwise you have to give the full path to your image.

•  flags - There are five possible inputs:
•  CV_LOAD_IMAGE_UNCHANGED - image-depth=8 bits per

pixel in each channel, no. of channels=unchanged
•  CV_LOAD_IMAGE_GRAYSCALE - image depth=8 bits, no.

of channels=1
•  CV_LOAD_IMAGE_COLOR - image-depth=?, no. of

channels=3
•  CV_LOAD_IMAGE_ANYDEPTH - image-depth=unchanged ,

no. of channels=?
•  CV_LOAD_IMAGE_ANYCOLOR - image-depth=?, no. of

channels=unchanged

•  if (img.empty()) //check whether the image is loaded or not
•  bool Mat::empty()
•  This function returns true, if Mat::data==NULL or Mat::total() == 0

•  If imread() function fails to load the image, 'img' will not be loaded any
data.

•  Therefore 'img.empty()' should return true. It's a good practice to check
whether the image is loaded successfully and if not exit the program.

•  Otherwise your program will crash when executing imshow() function.

•  void namedWindow(const string& winname, int flags =
WINDOW_AUTOSIZE);
•  This function creates a window. Parameters :

•  winname - Title of the window. That name will display in the title bar of the
newly created window.

•  flags - determine the size of the window. There are two options:
•  WINDOW_AUTOSIZE - User cannot resize the image. Image will

be displayed in its original size
•  CV_WINDOW_NORMAL - Image will resized if you resize the the

window

HELLO OPENCV
•  void imshow(const string& winname, InputArray mat);

•  This function shows the image which is stored in the
'mat' in a window specified by winname.

•  If the window is created with WINDOW_AUTOSIZE flag,
image will be displayed in its original size. Otherwise
image may be scaled to the size of the window.

•  Parameters:
•  winname - Title of the window. This name is used to

identify the window created by namedWindow() function.
•  mat - hold the image data

HELLO OPENCV
•  int waitKey(int delay = 0);

•  waitKey() function wait for keypress for certain time,
specified by delay (in milliseconds).

•  If delay is zero or negative, it will wait for infinite time.
•  If any key is pressed, this function returns the ASCII value

of the key and your program will continue.
•  If there is no key press for the specified time, it will return

-1 and program will continue.

HELLO OPENCV
•  void destroyWindow(const string& winname)

•  This function closes the opened window, with the title of
winname and deallocate any associated memory usage.

•  This function is not essential for this application because
when the program exits, operating system usually close all
the opened windows and deallocate any associated
memory usage.

HELLO OPENCV
•  Mat (int rows, int cols, int type, const Scalar& s);

•  This is the one of the many constructor available in Mat class.
It initialize the Mat object with the value given by the Scalar
object.

•  Parameters :
•  rows - Number of rows in the 2D array (height of the image in

pixels)
•  cols - Number of columns in the 2D array (width of the image

in pixels)
•  type - specify the bit depth, data type and number of channels

of the image.
•  Here are some of possible inputs for this parameter:

•  CV_8UC1
•  CV_8UC3
•  CV_64FC1

HELLO OPENCV
•  Mat(int rows, int cols, int type, const Scalar& s);

•  Scalar objetct Initialize each array element with the value
given.

•  For example: Scalar(0,0,100). First channel (Blue plane)
with 0, 2nd channel (Green plane) with 0 and 3rd channel
(Red Plane) with 100.

•  In this case final image is red!!

CAPTURE VIDEO FROM
FILE OR CAMERA
•  VideoCapture(const string& filename)

•  This is one of few constructors available in VideoCapture
class.

•  This constructor open the video file and initializes the
VideoCapture object for reading the video stream from the
specified file.

•  VideoCapture::VideoCapture(int device)
•  This constructor open the camera indexed by the

argument of this constructor and initializes the
VideoCapture object for reading the video stream from the
specified camera.

•  bool VideoCapture::IsOpened()
•  If the previous call to VideoCapture constructor is

successful, this method will return true. Otherwise it will
return false.

CAPTURE VIDEO FROM
FILE OR CAMERA
•  bool VideoCapture::set(int propId, double value)

•  You can change some properties of VideoCapture object.
•  If it is successful, this method will return true. Otherwise it will return

false.
•  Parameters :

•  int propID - This argument specify the property you are going to
change. There are many options for this argument. Ex.:
•  CV_CAP_PROP_POS_MSEC - current position of the video in

milliseconds
•  CV_CAP_PROP_POS_FRAMES - current position of the video

in frames
•  CV_CAP_PROP_FRAME_WIDTH - width of the frame of the

video stream
•  CV_CAP_PROP_FRAME_HEIGHT - height of the frame of the

video stream
•  CV_CAP_PROP_FPS - frame rate (frames per second)
•  CV_CAP_PROP_FOURCC - four character code of codec

•  double value - This is the new value you are going to assign to the
property, specified by the propID

CAPTURE VIDEO FROM
FILE OR CAMERA
•  double VideoCapture::get(int propId)

•  This function returns the value of the property which is specified
by propId.

•  Parameters : it uses the same propId list that we saw before.

CAPTURE VIDEO FROM
FILE OR CAMERA
•  bool VideoCapture::read(Mat& image);

•  The function grabs the next frame from the video, decodes it
and stores it in the Mat 'image' variable.

WRITE IMAGE TO FILE
•  imwrite("D:/TestImage.jpg", img, compression_params);

•  The function saves the image in the variable 'img' to a
file, specified by 'filename' . If this function fails to save the
image, it will return false. On success of writing the file to the
harddisk, it will return true.

•  vector<int> compression_params;
•  This is a int vector to which you have to insert some int

parameters specifying the format of the image. They are:
•  JPEG format - You have to

puch_back CV_IMWRITE_JPEG_QUALITY first and then a
number between 0 and 100 (higher is the better). If you want the
best quality output, use 100. I have used 98 in the above sample
program. But higher the value, it will take longer time to write the
image

•  PNG format - You have to puch_back
CV_IMWRITE_PNG_COMPRESSION first and then a number
between 0 and 9 (higher is the better compression, but slower).

WRITE IMAGE TO FILE
•  The image format is chosen depending on the file

name extension.

•  Only images with 8 bit or 16 bit unsigned single channel or 3
channel (CV_8UC1, CV_8UC3, CV_8SC1, CV_8SC3, CV_16UC1,
CV_16UC3) with 'BGR' channel order, can be saved.

•  If the depth or channel order of the image is different, use
'Mat::convertTo()' or 'cvtColor' functions to convert the image to
supporting format before using imwrite functio.

WRITE VIDEO TO FILE
•  Size frameSize(static_cast<int>(dWidth), static_cast<int>(dHeight))

•  Create a Size object with a given width and height.
•  Important: I have cast the width and height to integers because

they are originally double values and the Size constructor does not
accept double values as its parameters.

•  VideoWriter(const string& filename, int fourcc, double fps, Size
frameSize, bool isColor=true)

•  This is the constructor of the VideoWriter class. It initializes the
object with following parameters:

•  const string& filename - Specify the name and the location of the
output file. The video stream is written into this file

WRITE VIDEO TO FILE
•  This is the constructor of the VideoWriter class. It initializes the

object with following parameters:

•  const string& filename - Specify the name and the location of the
output file. The video stream is written into this file

•  int fourcc - specify the 4 character code for the codec which is
used to compress the video. Your computer may not be supported
some codecs. So, if you fail to save the video, please try other
codecs.

•  CV_FOURCC('D', 'I', 'V', '3') for DivX MPEG-4 codec
•  CV_FOURCC('M', 'P', '4', '2') for MPEG-4 codec
•  CV_FOURCC('D', 'I', 'V', 'X') for DivX codec
•  CV_FOURCC('P','I','M','1') for MPEG-1 codec
•  CV_FOURCC('I', '2', '6', '3') for ITU H.263 codec
•  CV_FOURCC('M', 'P', 'E', 'G') for MPEG-1 codec

WRITE VIDEO TO FILE
•  This is the constructor of the VideoWriter class. It initializes the

object with following parameters:

•  const string& filename - Specify the name and the location of the
output file. The video stream is written into this file

•  int fourcc - specify the 4 character code for the codec which is
used to compress the video. Your computer may not be supported
some codecs. So, if you fail to save the video, please try other
codecs (see http://www.fourcc.org/codecs.php).

•  CV_FOURCC('D', 'I', 'V', '3') for DivX MPEG-4 codec
•  CV_FOURCC('M', 'P', '4', '2') for MPEG-4 codec
•  CV_FOURCC('D', 'I', 'V', 'X') for DivX codec
•  CV_FOURCC('P','I','M','1') for MPEG-1 codec
•  CV_FOURCC('I', '2', '6', '3') for ITU H.263 codec
•  CV_FOURCC('M', 'P', 'E', 'G') for MPEG-1 codec

WRITE VIDEO TO FILE
•  For Windows users, it is possible to use -1 instead of the above

codecs in order to choose compression method and additional
compression parameters from a dialog box. It is a best method for
Microsoft Windows users.

•  double fps - frames per seconds of the video stream. I have used
20. You can try different values. But the codec should support the
fps value. So, use an appropriate value.

•  Size frameSize - Size object which specify the width and the height
of each frame of the video stream.

•  bool isColor - If you want to save a color video, pass the value as
true. Otherwise false. Remember codec should support whatever
value, you pass. In the above example, you have to give true as the
5th argument. Otherwise it will not work.

FILTERING IMAGES
•  Image filtering is an important part of computer vision.

•  For most of computer vision applications, filtering should
be done before anything else.

•  OpenCV supports lots of in-build filtering methods for
images.

FILTERING IMAGES
•  Morphological Operations

•  A set of operations that process images based on shapes
•  Morphological operations apply a structuring element to an

input image and generate an output image.
•  The most basic morphological operations are two: Erosion

and Dilation.
•  They have a wide array of uses, i.e. :

•  Removing noise
•  Isolation of individual elements and joining disparate

elements in an image.
•  Finding of intensity bumps or holes in an image

FILTERING IMAGES

FILTERING IMAGES
•  Eroded

FILTERING IMAGES
•  cvErode(img, img, 0, 2)

•  The 1st parameter is the source image.
•  The 2nd parameter is the destination image which is to be

the eroded image.
•  Here the 3rd parameter is the structuring element used for

erosion. If it is 0, a 3×3 rectangular structuring element is
used.

•  The 4th parameter is the number of times, erosion is
applied.

FILTERING IMAGES
•  Dilated

FILTERING IMAGES
•  cvDilate(img, img, 0, 2)

•  The 1st parameter is the source image.
•  The 2nd parameter is the destination image which is to be

the dilated image.
•  Here the 3rd parameter is the structuring element used for

dilation. If it is 0, a 3×3 rectangular structuring element is
used.

•  The 4th parameter is the number of times, dilatation is
applied.

FILTERING IMAGES
•  Inverted

FILTERING IMAGES
•  cvNot(img, img);

•  Inverting an image is like taking the negative of an image.
•  This function inverts every bit in every element of the image in

the 1st parameter and places the result in the image in the 2nd
parameter.

•  This function can process images in place. That means same
variable can be used for the 1st and 2nd parameters.

•  For a 8 bit image, the value 0 will be mapped to (255-0)=255
 the value 46 will be mapped to (255-46)=209

•  For a 16 bit image, the value 0 will be mapped to
(65535-0)=65535 the value 46 will be mapped to
(65535-46)=65489

CHANGE BRIGHTNESS
OF IMAGE OR VIDEO
•  Changing brightness is a point operation on each pixel.

•  If you want to increase the brightness, you have to add
some constant value to each and every pixel.

•  new_img (i, j) = img(i, j) + c
•  If you want to decrease the brightness, you have to

subtract some constant value from each and every pixel.

•  new_img (i, j) = img(i, j) - c

CHANGE BRIGHTNESS
OF IMAGE OR VIDEO

CHANGE BRIGHTNESS
OF IMAGE OR VIDEO
•  Say, you want to increase the brightness of the image by

20 units. Here is the output image of which the brightness
is increased by 20 units.

CHANGE BRIGHTNESS
OF IMAGE OR VIDEO
•  Say, you want to decrease the brightness of the image by

20 units. Here is the output image of which the brightness
is increased by 20 units.

•  You may already notice that although the 1st pixel of the
above image should have (12 - 20) = -8, I have put 0. It is
because pixels never have negative values. Any pixel value is
bounded below by 0 and bounded above by 2^(bit depth),.

CHANGE BRIGHTNESS
OF IMAGE OR VIDEO
•  Mat imgH = img + Scalar(75, 75, 75);

•  This line of code adds 75 to each and every pixel in the 3
channels (B, G, R channels) of 'img’.

•  Then it assigns this new image to 'imgH'.
•  Instead you can use this function also:

•  img.convertTo(imgH, -1, 1, 75);
•  Mat imgL = img + Scalar(-75, -75, -75);

•  This line of code subtracts 75 from each and every pixel in
the 3 channels (B, G, R channels) of 'img'.

•  Instead you can use this function also:
•  img.convertTo(imgL, -1, 1, -75);

CHANGE CONTRAST
OF IMAGE OR VIDEO

•  Changing the contrast is also a point operation on each
pixel.

•  The easiest way to increase the contrast of an image is,
multiplying each pixel value by a number larger than 1.

•  new_img (i, j) = img(i, j) * c c > 1
•  The easiest way to decrease the contrast is, multiplying

each pixel value by a number smaller than 1.
•  new_img (i, j) = img(i, j) * c c < 1

•  There are more advance methods to adjust contrast of an
image such as histogram equalization.

•  Such method adjust the contrast of an image such that
color distribution is balanced equally.

•  We will discuss the histogram equalization in the next
lesson.

CHANGE CONTRAST
OF IMAGE OR VIDEO

•  By multiplying each pixel value by 2, you can effectively double the contrast of an
image.

•  Here is the image of which the contrast is increased.
•  I have considered this image as a 8 bit unsigned image.
•  So, any pixel value should be from 0 to 255.
•  If the resulting image has values more than 255, it should be rounded off to 255.

CHANGE CONTRAST
OF IMAGE OR VIDEO

•  By multiplying each pixel value by 0.5, you can effectively halve the contrast of an
image.

•  Here is the image of which contrast is decreased.

CHANGE CONTRAST
OF IMAGE OR VIDEO

•  void convertTo(OutputArray m, int rtype, double alpha=1, double beta=0)

•  This OpenCV function converts image into another format with scaling.
•  Scaling is done according to the following formula:

•  m[i,j] = alfa * img[i,j] + beta

•  Parameters:
•  OutputArray m - Store the converted image
•  int rtype - Depth of the output image. If the value of rtype is negative, output

type is same as the input image. Possible inputs to this parameter:
•  CV_8U
•  CV_32S
•  CV_64F

•  double alpha - Multiplication factor; Every pixel will be multiplied by this
value

•  double beta - This value will be added to very pixels after
multiplying with the above value.

HISTOGRAM EQUALIZATION OF
GRAYSCALE OR COLOR IMAGE
•  Histogram is the intensity distribution of an image.

•  For example consider the following image of 2 bits (depth)

HISTOGRAM EQUALIZATION OF
GRAYSCALE OR COLOR IMAGE
•  Histogram of the a image shows how the pixel values are

distributed.

•  As you can see in the above image there are 5 pixels with
value 0,

•  7 pixels with value 1,

•  9 pixels with value 2

•  and 4 pixels with value 3.

HISTOGRAM EQUALIZATION OF
GRAYSCALE OR COLOR IMAGE
•  Histogram of a image usually presented as a graph.

•  The following graph represents the histogram of the
previous image.

HISTOGRAM EQUALIZATION OF
GRAYSCALE OR COLOR IMAGE
•  Histogram Equalization is defined as equalizing the intensity

distribution of an image or flattening (nivelar) the intensity
distribution curve.

•  Histogram equalization is used to improve the contrast of an
image.

•  The equalized histogram of the previous image should be
ideally like the following graph.

HISTOGRAM EQUALIZATION OF
GRAYSCALE OR COLOR IMAGE
•  But practically, you cannot achieve this kind of perfect

histogram equalization.

•  But there are various techniques to achieve histogram
equalization close to the perfect one.

HISTOGRAM EQUALIZATION OF
GRAYSCALE OR COLOR IMAGE

•  void cvtColor(InputArray src, OutputArray dst, int code, int
dstCn=0).

•  This function converts image from one color space to another color
space.

•  OpenCV usually loads an image in BGR color space.
•  In the code example, I want to change the image to grayscale color

space.
•  So, I use the CV_BGR2GRAY as the 3rd parameter.
•  If you want to convert to HSV color space, you should

use CV_BGR2HSV.

HISTOGRAM EQUALIZATION OF
GRAYSCALE OR COLOR IMAGE

•  void cvtColor(InputArray src, OutputArray dst, int code, int dstCn=0).
•  InputArray src- Input image (it should be 8 bit unsigned or 16 bit

unsigned or 32 bit floating point image)
•  OutputArray dst - Output image (It should have a same size and depth

as the source image)
•  int code- Should specify the color space conversion. There are many

codes available. Here are some of them:
•  CV_BGR2HSV
•  CV_HSV2BGR
•  CV_RGB2HLS
•  CV_HLS2RGB
•  CV_BGR2GRAY
•  CV_GRAY2BGR

•  int dstCn - Number of channels in the destination image. If it is 0, number
of channels of the destination image is automatically derived from source
image and color space conversion code. For a beginner, it is
recommended to use 0 for this parameter.

HISTOGRAM EQUALIZATION OF
GRAYSCALE OR COLOR IMAGE

•  void equalizeHist(InputArray src, OutputArray dst)

•  This function equalizes the histogram of a single channel image
(Grayscale image is a single channel image)

•  By equalizing the histogram, the brightness is normalized.
•  As a result, the contrast is improved.

•  InputArray src - 8 bit single channel image
•  OutputArray dst - Destination image of which histogram is equalized

(It should have the same size and depth as the source image.)

HISTOGRAM EQUALIZATION OF
GRAYSCALE OR COLOR IMAGE

•  cvtColor(img, img_hist_equalized, CV_BGR2YCrCb)

•  This line converts the color space of BGR in 'img' to YCrCb color
space and stores the resulting image in 'img_hist_equalized'.

•  I am going to equalize the histogram of color images.
•  In this scenario, I have to equalize the histogram of the intensity

component only, not the color components.
•  So, BGR format cannot be used because its all three planes represent

color components blue, green and red.
•  So, I have to convert the original BGR color space to YCrCb color

space because its 1st plane represents the intensity of the image
where as other planes represent the color components.

HISTOGRAM EQUALIZATION OF
GRAYSCALE OR COLOR IMAGE

•  void split(const Mat& m, vector<Mat>& mv)

•  This function splits each channel of the 'm' multi-channel array into
separate channels and stores them in a vector, referenced by 'mv'.

•  const Mat& m - Input multi-channel array
•  vector<Mat>& mv - vector that stores the each channel of the input

array

HISTOGRAM EQUALIZATION OF
GRAYSCALE OR COLOR IMAGE

•  equalizeHist(channels[0], channels[0]);

•  Here we are only interested in the 1st channel (Y) because it
represents the intensity information whereas other two channels (Cr
and Cb) represent color components.

•  So, we equalize the histogram of the 1st channel using OpenCV in-
built function, 'equalizeHist(..)' and other two channels remain
unchanged.

HISTOGRAM EQUALIZATION OF
GRAYSCALE OR COLOR IMAGE

•  void merge(const vector<Mat>& mv, OutputArray dst)

•  This function does the reverse operation of the split function.
•  It takes the vector of channels and create a single multi-channel array.

•  const vector<Mat>& mv - vector that holds several channels. All
channels should have same size and same depths

•  OutputArray dst - stores the destination multi-channel array

HISTOGRAM EQUALIZATION OF
GRAYSCALE OR COLOR IMAGE

•  cvtColor(img_hist_equalized, img_hist_equalized, CV_YCrCb2BGR)

•  This line converts the image from YCrCb color space to BGR color
space.

•  It is essential to convert to BGR color space because 'imshow(..)'
OpenCV function can only show images with that color space.

SMOOTH / BLUR
IMAGES
•  Sometimes it is also called blurring
•  The main objective of smoothing is to reduce noise
•  Such noise reduction is a typical image pre-processing

method which will improve the final result.
•  There are various ways to smooth or blur an image.
•  Smoothing is done by sliding a window (kernel or filter)

across the whole image and calculating each pixel a value
based on the value of the kernel and the value of overlapping
pixels of original image.

•  This process is mathematically called as convolving an
image with some kernel.

•  The kernel is the only difference in all of the types of
smoothing (Blurring) methods.

SMOOTH / BLUR
IMAGES
•  For Example, 5 x 5 kernel used in homogeneous

smoothing (blurring) is as below.

•  This kernel is known as "Normalized box filter".

SMOOTH / BLUR
IMAGES
•  For Example, 5 x 5 kernel used in Gaussian smoothing

(blurring) is as below.

•  This kernel is known as "Gaussian kernel".

SMOOTH / BLUR
IMAGES
•  Some important facts about smoothing kernels (filters):

•  Number of rows and number of columns of a kernel should
be odd (e.g. - 3x3, 11x5, 7x7, etc).

•  When the size of the kernel is getting larger, processing
time also becomes larger.

HOMOGENEOUS
SMOOTHING
•  Is also called as "Homogeneous Blurring", "Homogeneous

Filtering" or "Box Blurring".

•  This is the most simplest method of smoothing an image.
•  It takes simply the average of the neighborhood of a pixel

and assign that value to itself.

•  You have to choose right size of the kernel.

•  If it is too large, small features of the image may be
disappeared and image will look blurred.

•  If it is too small, you cannot eliminate noises of the image.

GAUSSIAN
SMOOTHING
•  is also called as "Gaussian Blurring" or "Gaussian

Filtering".

•  http://en.wikipedia.org/wiki/Gaussian_blur

MEDIAN SMOOTHING
•  is also called as "Median Blurring" or "Median Filtering".

•  The input image is convolved with a Median kernel
•  Detection algorithms because under certain conditions, it

preserves edges while removing noise.

•  http://en.wikipedia.org/wiki/Median_filter

BILATERAL
SMOOTHING
•  is also called as "Bilateral Blurring" or "Bilateral Filtering".

•  This is the most advanced filter to smooth an image and
reduce noise

•  All of the above filters will smooth away the edges while
removing noises.

•  But this filter is able to reduce noise of the image while
preserving the edges.

•  The drawback of this type of filter is that it takes longer
time to process.

•  http://en.wikipedia.org/wiki/Bilateral_filter

HOW TO ADD
TRACKBAR
•  Trackbars are very useful in lots of occasions.

•  It enables users to change various parameters while the
OpenCV application is running.

•  Whenever you change the position of a trackbar, the value
of an integer variable is changed.

•  Using that value, we can change a property of an image or
a video.

•  The following example will show you how to do it with
OpenCV.

HOW TO ADD
TRACKBAR
•  OpenCV Example of How to Change Brightness and

Contrast of an Image with Trackbars:

•  In the following example, I have added two trackbars to
change the brightness and contrast of an image.

•  It is iterating in a infinite while loop and applying the
brightness and contrast to the image periodically because I
want to apply the changes to the image whenever the user
changes the position of the trackbar.

HOW TO ADD
TRACKBAR

•  int createTrackbar(const string& trackbarname, const string&
winname, int* value, int count, TrackbarCallback onChange = 0, void*
userdata = 0)

•  trackbarname - The name of the trackbar
•  winname - The name of the window to which the trackbar is attached
•  value - This integer, pointed by this pointer, holds the value associated

with the position of the trackbar
•  count - The maximum value of the trackbar. The minimum value is

always zero.
•  onChange - This function will be called everytime the position of the

trackbar is changed. The prototype of this function should be
"FunctionName(int, void*)". The "int" value is the value associate with
the position of the trackbar. And "void*" is any pointer value which you
pass as the "userdata" (See the next parameter).

•  userdata - This pointer variable will be passed as the second
parameter of the above function

COLOR DETECTION &
OBJECT TRACKING
•  Object detection and segmentation is the most important

and challenging fundamental task of computer vision.

•  It is a critical part in many applications such as image
search, image auto-annotation and scene understanding.

•  However it is still an open problem due to the complexity
of object classes and images.

•  The easiest way to detect and segment an object from an
image is the color based methods .

•  The colors in the object and the background should have
a significant color difference in order to segment objects
successfully using color based methods.

SIMPLE EXAMPLE OF
DETECTING RED
OBJECTS
•  OpenCV usually captures images and videos in 8-bit,

unsigned integer, BGR format.

•  In other words, captured images can be considered as
3 matrices, BLUE,RED and GREEN with integer values
ranges from 0 to 255.

SIMPLE EXAMPLE OF
DETECTING RED
OBJECTS
•  In the previous application, I have considered that the red

object has 'hue', 'saturation' and 'value' in between
170-180, 160-255, 60-255 respectively.

•  Here the 'hue' is unique for that specific color distribution
of that object.

•  But 'saturation' and 'value' may be vary according to the
lighting condition of that environment.

SIMPLE EXAMPLE OF
DETECTING RED
OBJECTS
•  Hue values of basic colors:

•  Orange 0-22
•  Yellow 22- 38
•  Green 38-75
•  Blue 75-130
•  Violet 130-160
•  Red 160-179

•  There are a lot of programs that can calculate HSV values
of images.

•  These are approximate values!!!

SIMPLE EXAMPLE OF
DETECTING RED
OBJECTS
•  You have to find the exact range of 'hue' values according

to the color of the object.

•  I found that the range of 170-179 is perfect for the range of
hue values of my object.

•  The 'saturation' and 'value' is depend on the lighting
condition of the environment as well as the surface of the
object.

•  How to find the exact range of 'hue', 'saturation' and
'value' for a object is discussed later

SIMPLE EXAMPLE OF
DETECTING RED
OBJECTS
•  cvInRangeS(const CvArr* src, CvScalar lower,

CvScalar upper, CvArr* dst)
•  Checks that each array element of 'src' lies between 'lower'

and 'upper'.
•  If so, array element in the relevant location of 'dst' is assigned

'255' , otherwise '0'.
•  const CvArr* src - source array which is the image
•  CvScalar lower - inclusive lower bound (In the above

application, it is cvScalar(170,160,60) because my lower
bound for 'hue','saturation' and 'value' is 170,160 and 60
respectively)

•  CvScalar upper - exclusive upper bound (In the above
application, it is cvScalar(180,256,256) because my upper
bound for 'hue','saturation' and 'value' is 179,255 and 255
respectively)

•  CvArr* dst - destination array which is the binary image (must
have 8-bit unsigned integer or 8-bit signed integer type)

SHAPE DETECTION
•  In this lesson, let's see how to identify a shape and

position of an object using contours with OpenCV.

•  Using contours with OpenCV, you can get a sequence of
points of vertices of each white patch (White patches are
considered as polygons).

•  As example, you will get 3 points (vertices) for a
triangle, and 4 points for quadrilaterals.

•  So, you can identify any polygon by the number of
vertices of that polygon.

•  You can even identify features of polygons such as
convexity, concavity, equilateral and etc by calculating
and comparing distances between vertices.

SHAPE DETECTION
•  In this lesson, let's see how to identify a shape and

position of an object using contours with OpenCV.

•  Using contours with OpenCV, you can get a sequence of
points of vertices of each white patch (White patches are
considered as polygons).

•  As example, you will get 3 points (vertices) for a
triangle, and 4 points for quadrilaterals.

•  So, you can identify any polygon by the number of
vertices of that polygon.

•  You can even identify features of polygons such as
convexity, concavity, equilateral and etc by calculating
and comparing distances between vertices.

